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Abstract— The use of a single camera with a zoom lens
for tracking involves a continuous arbitration of accuracy
vs. reliability. We address this problem with an information-
theoretic approach, where we extend zoom selection based on
conditional entropy by incorporating the fixation errors into
the observation likelihood. We present a thorough analysis of
previous approaches, revealing zoom and speed limits, especially
how the ratio of process to measurement noise effectively limits
the maximally usable zoom for any system tracking with a
Kalman filter. This work finally presents means to circumvent
aforementioned limitations.

I. I NTRODUCTION

In many application areas – such as sport events,
surveillance, and patient monitoring – zoom control can
be seen as a simple example for arbitration of different
interests. One interest is to obtain the maximum resolutionof
a target to facilitate classification. Examples are identification
of people, closeups to disambiguate specific gestures, or
properties such as view direction. The second interest is to
minimise the risk of losing a target once it has been detected.
Here zoom is an important factor. When a target remains
static, the zoom can be safely increased. Once a target starts
moving, small mistakes in following the object can result in
a loss of sight. For example, following an object with a fixed
zoom telescope is extremely hard once this object begins to
move. The aim of this work is to provide a method to control
the zoom for a camera directed at a single target. The optimal
zoom setting is minimising the chance of losing the target,
and at the same time maximising the resolution of the target.

Related work can be separated into two sections. Primarily
zoom has been controlled with a single, static camera
acting as a supervisor — this camera makes wide area
observations and coordinates PTZ (pan, tilt, zoom) settings
of a set of active cameras [1], [2], [3], [4], [5], [6]. In
these systems, active camera parameters assumed to be are
perfectly controllable and set by geometric reasoning, with
the exception of Greiffenhagen et. al. [7], who use statistical
modelling to control the pan and tilt parameters.

There is little work on zoom control of a single camera.
The focal length dilemmais a term coined by Denzler et al.
[8]. It addresses the specific issue of balancing the preference
for a greater zoom (or larger focal length) with the risk of
losing track of the target. This tradeoff between resolution
and tracking error has also been addressed by Tordoff and
Murray, depending on kinematical uncertainty in [9], and
under the requirement of size preservation [10]. In Fayman
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et al. [11], zoom selection is driven by keeping the ratio
of focal length and distance of the target constant, hereby
assuming a fronto–parallel object.

The important difference is that Tordoff, Murray and
Fayman use the constraint of keeping the object within
certain limits to the image boundary, whereas Denzler et al.
make use of the predicted behaviour and expected visibility
of the target. The zoom control is different, since an object
next to the image border most likely to move closer to the
centre is unlikely to get lost, and hence does not require
zooming out.

In this paper, we present novel approaches to control
zoom which build upon an information–theoretic measure
and is made more stable by using a second estimate of
the innovation. We show in detail how this increases the
usable zoom range while still maintaining track, and how
the underlying parts and the previous approaches limit the
use of potentially available zoom range. Furthermore, the
information–theoretic concept of entropy to measure the
uncertainty makes the zoom selection amenable to data
fusion from several sensors, can be extended to address any
kind of observation parameters and is not specific to the
implementation with a Kalman filter.

In the next two sections, we recapitulate the approaches
of [8] and [9]. An analysis in section IV on a simple
model points out their strengths and weaknesses, whereas the
former are combined into our model described in section V.
The paper finishes with an in–depth discussion of the zoom
limit imposed by the noise characteristics, followed by a
conclusion and future work section.

II. ENTROPY-BASED ZOOM SELECTION

The zoom selection method by Denzler et al. takes an
information–theoretic approach. The idea is to choose an
action, such as the zoom setting, which maximally reduces
uncertainty in the state space. A measure for uncertainty of
the state is entropy, and since the decision for an action hasto
be made before observing the target, the appropriate value is
the expected conditional entropy. This quantifies the average
decrease of uncertainty in statex when an observationo is
made, and is independent of any actual observation:

Ĥa(x|o) = −

∫∫

∞

−∞

pa(x,o) log(pa(x|o)) dx do (1)

The distributionspa(x,o) andpa(x|o) depend on the chosen
actiona. The optimal action – for example the zoom value
– is finally obtained from

a∗ = arg min
a

Ĥa(x|o). (2)



This zoom selection process is now put into a Kalman
filter context. The derivation and resulting equations of the
Kalman filter can be found in textbooks, e.g. [12], we confine
ourselves to the notation required here1.

We denotex̂+

k for a state which has been updated with
the latest observationok, and x̂−

k the state which has been
predicted by the Kalman filter, but not updated because
no observation was made. The analogous notation is used
for the covariance matrices,̂P+

k and P̂−

k , respectively. The
innovation νk = ok − H(a)x̂−

k updates the prediction
according to the Kalman gainK = P̂−

k H(a)T (R +

H(a)P̂−

k H(a)T )−1:

x̂+

k = x̂−

k + Kkνk

The observation matrixH(a) reflects the dependency on the
current zoom or other parametera, the covariance matrices
R andQk describe the Gaussian noise of the measurement
and the process, respectively.

Since all random variables are assumed to be Gaussian
distributed, and the entropy of such a variablex ∈ R

n with
x ∼ N (µ,P) reduces to

H(x) =
n

2
+

1

2
log((2π)n|P|), (3)

showing that the uncertainty ofx depends only on its
covariance matrix.

The conditional entropy in equation 1 is obtained by
averaging over the domain of all observations. This domain
can be split into the area inside (v) and outside (¬v) the
image. When the target is inside of the image, an observation
is made and the state can be updated tox̂+

k , resulting in
the entropyH(x̂+

k ). If the target is outside of the image,
the entropyH(x̂−

k ) is obtained from the predicted state
only. Both these entropies are independent of the actual
observation (see equation 3), only on the assumption whether
the target will be observed or not. When rewriting the integral
in 1 as

Ĥa(xk|ok) = −

∫

∞

−∞

pa(ok)

∫

∞

−∞

pa(xk|ok) log(pa(xk|ok)) dxk dok

(4)

and applying previous observations, this simplifies to

Ĥa(xk|ok) = w(a)H(x̂+

k )

+ (1 − w(a))H(x̂−

k ), (5)

where the entropies are averaged by the likelihood of making
an observationw(a), i.e. the chance of the target being within
the observation region. It is worthwhile to emphasise that
none of the parts of the criterion in equation 2 depends on
future observations, since the term

w(a) =

∫

v

pa(ok) dok (6)

1The results of this paper are easily augmented to apply to linear extended
Kalman filters; For the sake of clarity we use the notation of the linear
version.

is influenced only by the current likelihood of the
observation, which is a Gaussian distribution

pa(ok) ∼ N (Hax̂
−

k ,R + HaP̂
−

k HT
a
) (7)

about the projected mean of the state prediction.

III. I NNOVATION BASED ZOOM SELECTION

In the approach of Tordoff and Murray – who also use
a Kalman filter to track an object – the covariance of the
innovation is used to specify a confidence intervalζ on the
fixation errorν:

p(|νk| < ψ) ≥ ζ. (8)

The fixation error is required to remain below the observation
boundariesψ. For a confidence ofζ = 1−10−6, this results
in the zoom rule

f2
k+1 ≈

ψ2

24|| covar[ν]k||2
. (9)

The matrix 2−norm yields the largest uncertainty in any
direction. The covariance of the innovation is estimated by
keeping a running average:

covar[ν]k = γνkν
T
k + (1 − γ) covar[ν]k−1. (10)

A change in zoom affects the fixation error and the Kalman
filter dynamics, if the measurement error is dominated
by zoom-independent noise. To keep balance between
measurement and process noise in a tuned filter, the change in
the observation model has to be taken into account explicitly,
and requires that the innovation, state covariance and process
noise be scaled inversely to the zoom:

P̂−

k = (f2
k/f

2
k+1)P̂

−

k Qk+1 = (f2
k/f

2
k+1

)Qk (11)

ν
′

k = νk/fk (12)

IV. A NALYSIS ON SYNTHETIC DATA

A vital factor to the success of the entropy-based zoom
control approach described in section II is that the Kalman
filter correctly models the movement of the object and
the noise characteristics of the motion model. While it is
comparatively simple to model the behaviour of inanimate
objects, this is much harder or can be impossible in the
case of living beings, or objects operated by humans. While
it certainly is possible to find some upper bounds on the
maximum velocity of pedestrians, this might be performance
limiting if the object under scrutiny is a speeding car. We
therefore should expect a failure of the model, or at least
investigate what happens if the model is wrong.

To compare the performance of zoom control by the two
approaches, we run several variants of the filter on synthetic
data. For clarity we restrict ourselves to a simple model
which has been introduced by Tordoff and Murray [9]: A
line-camera is tracking an object at a constant distance,
with a supposedly constant angular velocity. The camera
is rotatable and the predicted position is used to keep the
tracked object in the centre of the image.
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Fig. 1. Behaviour of Kalman filters with entropy based zoom control. The
biased Kalman filter results in fixation error shown in (b) and loses track.

The state of the object is described asx =
(

φ φ̇
)T

with a linear motion modelxk+1 = Fxk + uk + qk. The
update matrix for a given discrete time step∆t is [12]

F =

(

1 ∆t
0 1

)

(13)

The known inputuk is the direction the camera is looking
at: uk =

(

−θ 0
)T

, and the camera directionθ is
set to the predicted positionφ of the object. The process
noise qk is a zero mean Gaussian noise sequence with
covarianceE[qkq

T
k ] = Qk, which approximates the size

of the unmodelled acceleration̈φ. The observation model
assumes a small angular error, hence a linear model

ok = hTxk + r, (14)

with h =
(

f 0
)T

suffices. In this observation model
the valuef is the zoom value, or actiona, as described
in the section on entropy based control. A zero mean
Gaussian noise sequencer models the observation noise with
a covariance ofE[r rT ] = R.

The object motion starts at an angle of−60◦ with constant
velocity of 30◦/s. Once the target reaches60◦, the object
accelerates with−20◦/s2 until it attains its final velocity of
30◦/s. The initial velocity for the state estimate is set to zero,
whereas the position is initialised to the actual ground truth
value. The image border is arbitrarily set to−0.25 . . . 0.25.
In all experiments we assume an observation noise of four
percent of the image width (R = σ2

r = 0.022).
To demonstrate the behaviour of the zoom control

algorithms, we let the filter run once with a process noise
with standard deviation of20◦/s2, and a second time with a
hundredth of this, making it a biased estimator, or unmatched
filter.

The results of the entropy based zoom control are shown
in figure 1. The first plot, (a), details that both filters
have approximately the same performance, i.e. the position
follows the ground truth, but the unmatched filter loses track

once the target passes the image boundary (shown in (b)),
which happens a few frames after the velocity changed.
Figure 1(c) and (d) show how the entropy is minimised in
each frame in both versions, and the zoom is increased up
to the maximum value due to the decreased uncertainty. The
entropy and zoom of the unmatched filter sink respectively
rise faster, due to the increased trust in the motion model.

The loss of track can be explained by investigating the
mean conditional entropy term in equation 5. SinceP̂−

k stays
constant during the minimisation, the relevant part can be
rewritten as

Ĥa(xk|ok)

= w(a)(H(x̂+

k ) −H(x̂−

k )) +H(x̂−

k )

= c1 + w(a) log
∣

∣

∣
P̂+

k (ak)
∣

∣

∣
− log

∣

∣

∣
P̂−

k (a)
∣

∣

∣

= c2 + w(a) log |I − KHa| (15)

= c2 + w(a)

log
∣

∣

∣
I − P̂−

k HT
a
(R + HaP̂

−

k HT
a
)−1Ha

∣

∣

∣
(16)

c1, c2 are constants irrelevant to the minimisation, andK

in equation 15 is the Kalman filter gain, which expands to
equation 16. Our model has a one dimensional observation
space, i.e.R and the observations are scalar. This simplifies
the equation even further:

Ĥa(xk|ok) = w(a) log

∣

∣

∣

∣

∣

1

1 + hP̂−

k hT /σ2
r

∣

∣

∣

∣

∣

+ c (17)

Since in this model the predicted observation is always0,
the visibility factorw(a) reduces to

w(a) = erf

(

ψ

√

2(σ2
r + hP̂−

k hT )
−1

)

. (18)

Both factors of the minimisation criterion depend ona priori
values only, hence the inability to change the behaviour of
the zoom control if the target is about to leave the observable
region. This points out that entropy-based control requires a
fitting process model and process noise characteristics.

Figure 2 shows the behaviour of the covariance based
zoom control, both with and without the zoom adaption of
the filter dynamics as stated in equations 11-12. The fixation
error in figure 2(b) shows the loss of track of the unmatched,
non-adapted filter. The matched versions of the filter keep
track, as well as the adapted version of the unmatched
filter. The zoom rises steadily, yet slowly in the adapted
and matched filter case. This behaviour is emphasised in
the zoom-dependent and matched filter case. Whereas the
filter keeps track, the covariance criterion is too restrictive.
As can be seen in figure 2(c), the zoom rises much slower
than in the case of entropy based control, and never reaches
the maximum. The speed and maximum of the zoom are
actually bounded by the running average imposed on the
innovation covariance: When assuming a stationary white
noise sequence forν, i.e. covar[ν]k = ν

2
0, the difference

equations 9 and 10 result in

f2
k+1 =

A

(A− ν
2
0)(1 − γ)k + ν

2
0

A ≈
ψ2

24
, (19)



which is limited by f2
∞

≈ ψ2

24ν
2
0

. Figure 2(d) details this
behaviour for a non-adapted, matching filter. The covariance
is kept constant and set to the average value of the innovation
covariance. This problem is less apparent in the matched
and adapted case, because here the innovation covariance is
inversely scaled with the current focal length before updating
the last estimate. Still, the increase of zoom depends on the
dampingγ.

The second restriction of this approach is due to the use
of observations for control. The observations do not reflect
the expected dynamics of the object. Since the zoom rule
specifies a confidence interval on the innovation, the zoom
is simply reduced to keep the object in the centre of the
observation region. This is not necessarily the best thing to
do. Consider the setting given by Tordoff and Murray, where
a cameraman observes a gnu on a veld. If the cameraman
knows with confidence that the gnu will move to the right,
because the gnu is running already, she will certainly not
zoom far out if the gnu is at the left image boundary.

V. I MPROVEMENTS

The problems of the two approaches are loss of track
in the entropy-based control, and both a slow increase and
limit of zoom in the innovation covariance based method. A
näıve solution would be to choose the minimum of either
approaches, but since the entropy based approach is not
bound by actual fixation errors, the zoom setting would
simply be imposed by the innovation covariance approach.
Also, the control rule addresses one observation parameter–
zoom – only, and restricts the selection to a radial observation
area. The entropy based control rule instead can address
multiple observation parameters and nonuniform observation
domains. We therefore discuss two improvements to the
entropy based approach which make it more robust to wrong
filter dynamics.
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Fig. 2. Behaviour of Kalman filters with covariance based zoomcontrol.
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Fig. 3. Shifting the mean (green,
stippled) or increasing the covariance
(cyan, dashed) decreases the visibility
part of the objective function,
demanding to zoom out

Basically, there are
two ways to influence the
zoom selection process
of the entropy method.
One is to rectify the
false estimation of the
mean value, and the other
one is to increase the
uncertainty according
to the actual innovation
sequence. Both these
approaches are sketched
for a constant observation
parameter in figure 3. In
the case of a matching
filter, the predicted observationo− = Hax̂

−

t coincides
with the actual process. Now presume a unmatched filter,
which gets measurements aroundo. The first method we
propose follows the innovation sequence with an innovation
estimateν−. The second approach adjusts the covariance of
the observation,R, according to the measured innovation
covariance. Both approaches reduce the likelihood of
making an observation, which is given by the total area of
the distribution function within the observation region. To
increase this likelihood (and to decrease the area outside of
the image borders) a smaller zoom value must be chosen.

A. Estimation of the innovation sequence

In the first approach, we incorporate the fixation error
directly into the visibility termw(a) in equation 6 by adding
an innovation term to the observation likelihood:

pa(ok) ∼ N (Hax̂
−

k + ν,R + HaP̂
−

k HT
a
) (20)

When there are fixation errors, the chance of making an
observation will decrease, and the zoom is decreased. This
leaves the zoom control intact as long as the filter is matched,
i.e. results in a faster increase of zoom demand. For this
approach, the innovation of the next time stepνk+1 =
ok+1 − Hx̂−

k is added to the predicted observation. This
innovation is not yet available and needs to be from the
same parameter setting as the one being currently evaluated.
By making use of the pseudo-inverseH+

k at time k we
approximate:

ok+1 ≈ Hk+1H
+

k ok (21)

In the case of the observation model used in the experiments
above, this givesok+1 = fk+1

fk

ok, which is the same result
as obtained for the single parameter case of zooming.

Note that the introduction of the innovation in the visibility
term makes the entropy highly dependent on the last
observation. Similar to the covariance based approach, we
used a running average. Contrary to the limit of zoom speed
imposed by the running average, this only addresses the
observability termw(a), which is close to1 if the filter is
matched. Since the observability term is influenced, small
changes have a huge influence and the control reacts with
zooming out once the target is nearing the border of the
observation region.
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Fig. 4. Position, fixation error, zoom levels and entropy of entropy-
based zoom control, incorporating the predicted observation only (red), and
combined with the focal length adaption (green)

When a target is observed for the first time, the zoom
is bound by the initial value of the state covariance
matrix. Additionally, the predicted observation value canbe
initialised with a maximum of the observation domain, i.e.
with the left border if the target enters the scene from the left.
This initialisation is of course more difficult in observation
spaces of higher dimensions.

Figure 4(a) shows the performance of the filter modified
accordingly, once in a focal length dependent (red), and
independent version (green). For both versions of the filter,
the zoom level rises as long as the filter is matched, and
reaches the maximum, as seen in inset 4(c). This behaviour
can be explained by the fourth plot (d) of that same figure.
The entropy continually sinks, and the visibility term rises.
The visibility attains its maximum as soon as the initialisation
phase of the running average has passed. Once the motion
pattern of the target changes, the visibility drops, and the
zoom is set to minimum.

The zoom change affects the state estimate shown in
figure 4(a), but with a considerable delay in the case of the
focal length dependent version (red). This is also portrayed
by slow increase of the entropy in (d). This behaviour
stems from the loss of importance of the measurement error
when compared to the state covariance matrix. The latter is
amplified by the observation model, and data observed at a
lower zoom has a higher influence onto the state estimate.
When f is rising, the constant measurement noise loses
importance. Whenf is decreasing, the gained trust in the
process model is slowly decreased.

This change in filter dynamics results in a state estimate (in
figure 4(a)) with a smaller error than in the original version.
Once the target accelerates, the entropy based zoom criterion
yields a smaller setting, keeping the target within the image
boundary. As soon as the filter has recovered, the zoom is
increased again.

B. Integration of innovation covariance

Unfortunately, the previous method is only usable under
the condition thatHk+1H

+

k is invertible and suffers from
the need of appropriate initialisation. The second method
we propose avoids these pitfalls and incorporates the
covariance of the fixation error into the entropy term
in equation 5, arguing similarly to Mehra [13], that the
innovation sequence contains the missed information useful
for innovation adaptive estimation.

We keep track of the innovation covariance independent of
the varying observation parameters, which thus needs to be
normalised by the pseudo-inverse of the observation model.
The resulting matrix is finally used to update a running
average

Ck = γH+

k oko
T
kH+T

k + (1 − γ)Ck−1, (22)

similar to equation 10.
Instead of directly working with this matrix for zoom

selection, we instead replaceR in the entropy calculation
with

R′ = 0.5R + α0.5Hk+1CkH
T
k+1. (23)

A rise of C effectively penalises an increasing zoom for a
non-matching filter by back-projecting the running averageof
the covariance with the hypothetical observation parameters
Hk+1. This penalty is controlled by the factorα.

Note that the termR is not only changed in the visibility
term, but also in the calculation of the entropy of the Kalman
filter. This is necessary since an increase in uncertainty
flattens the Gaussian in equation 6, reducing the impact of the
visibility term in the overall conditional entropy calculation.

The behaviour of this modification is shown in figure 5,
again with and without Kalman filter adaption to focal length
change. Apparent is the loss of track in the unadapted case.
Even though the zoom is set to the minimum, the fixed
dynamics of the filter are too slow and the visibility term
sinks. The factorα is chosen in such a way that at the
smallest zoom level the modified observation covarianceR′

attains the original valueR, but can also be used as a
safeguard value. In figures 6 the influence of this value on
observation error and zoom selection is shown for varying
α. In this setting, the smallest zoom level is1/3, i.e. the
appropriateα is 9. Apparent is the influence on the maximum
zoom level, which is not reached on average for higher values
of α before the motion of the target changes, but keeps track
in all cases. Figure 7 shows a comparison of the approaches
presented in this paper. Most notable is the effect of the
method of section V-A. This has a far higher influence on
the visibility than the approach using innovation covariance,
which is only addressing the spread of the Gaussian, but not
the mean value. Since the application of the former method
is limited, we restrict ourselves to the use of the approach
incorporating the innovation covariance. It tracks as wellas
the method proposed by Tordoff, but uses a wider range of
zoom levels. VI. D ISCUSSION

Since all of the filters performed well with a higher process
noise, one might ask why a small value is beneficial. Figure 8
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Fig. 5. Position, fixation error, zoom levels and entropy of entropy-
based zoom control, incorporating the innovation covariance only (red), and
combined with the focal length adaption (green), forα = 9

shows the zoom of the entropy based zoom control with
over-estimated process noiseQ. All other settings of the
model are kept the same, also the maximum zoom setting
of 30. The further the process noise is increased, the more
limited is the zoom control. Figure 9 shows the minima of
equation 17 for varying ratios of process to measurement
noise covariances. They define the maxima of the zoom
obtainable by the entropy based zoom control approach.
For example, in order to be a useful zoom criterion for a
maximum zoom of40 ≈ 101.6, the ratio P

R
must not be

greater than10−2, otherwise the minimum would limit the
zoom range.

As an example, we plotted the behaviour of the filters
presented in the previous sections. We used the measurement
noise as given in section IV, and the steady-state solution
of the Riccati equation for the state’s covariance matrix
([14], p306f). This is finally approximated byσ2 =
σr

√

(||Q||2).
This shows how the zoom effectively is limited by the

conditional entropy – even with perfect visibility the zoom
would never be set beyond the respective minimum. The
interpretation of these findings are explained quite easily—
if the process noise is too high, trust in the movement of the

Frame number

er
ro

r

 

 

Image boundary

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

0.1 1
9
100

(a) Errors

Frame number

zo
om

 

 

0 50 100 150 200 250
0

10

20

30

40
1
9
100

(b) Zoom levels

Fig. 6. Mean performance (and standard deviation) of the filter modification
based on the innovation covariance for varyingα = {1, 9, 100}, for 100

runs of the filter.
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Fig. 7. Comparison of the zoom control methods based on entropywith
the improved observation (‘H+obs’), innovation covariance(‘H+cov’), the
original covariance method (’cov’). ‘gt’ refers to ground truth.

target is not high enough to risk zooming in. In the case of
the cameraman observing a speeding object, zooming makes
sense as long as she is sure the object will continue to move
in a direction that can be guessed reliably.

Lastly, we applied the presented zoom control to tracking
of humans in video sequences. Since the focus of this
work is the comparison of zoom control methods, we use
the same observations for all methods, which are extracted
beforehand from a video sequence by a method based
on background subtraction [15]. Every frame is then a
subsampled part of this high-definition input, imitating a PTZ
camera. We assume a constant velocity motion model, and
the observation is the bounding box of the detected object.

The development of the entropŷH and the probability
of making an observation,w, are shown in figure 10, here
for the non-adapted entropy based zoom control with a
maximum zoom of4. The first frame (a) shows the1σ -
covariance ellipse of the location right after initialisation on
a newly detected target. Due to the high initial uncertainty
of the location, the probability of making an observation is
highest when not zooming in. The fifth frame (b) shows the
decreased covariance ellipse, and that the confidence in the
making an observation in the next frame rises. The camera
zooms in, but is limited by the visibility of the bounding box
of the target. If the camera zoomed in too far, the bounding
box would be cropped. In the 16th frame (c), the camera
zooms in further and starts panning to follow the object.
In this setting and a maximum zoom level of10, we run
a final experiment with a matched and an unmatched filter,
where the process noise is underestimated. Here, we compare
the entropy based zoom control in the original form with
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the innovation covariance based modification presented in
section V-B. Figure 11 shows a comparison of the zoom
level chosen by both methods for the matched and unmatched
case, as well as the resulting trajectories of the centre of the
target obtained by the biased filters. Both control rules for
matching filters zoom to the maximum zoom level which
allows observation of the whole target, ad gradually zoom out
once the size of the target increases. Again, the entropy based
control rule applied to the unmatched filter results in a fast
zoom onto the target up to the upper limit. Since the control
rule assumes a matching filter, the zoom level remains set to
this setting. The control rule which includes the innovation
covariance, however, incorporates the error in the observation
process and adjusts zoom accordingly. The trajectories also
show that the improved control method results in a better
estimate. This comes for the price of a slightly delayed zoom.

VII. C ONCLUSIONS AND FUTURE WORK

We presented novel zoom control methods which use an
information–theoretic criterion, but also integrate an estimate
of the fixation error to make robust predictions of the
expected observability. A thorough analysis of previous work
has shown that the ordinary entropy based control rule needs
a matching filter, and its resulting zoom rule is bound by
an overestimated process noise. This demands a filter which
is not necessarily tuned to minuscule accuracy, but can
react to fixation errors instead. To make the filter robust
with regard to a wrong motion model, we introduced the
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Fig. 11. Comparison of entropy based zoom control without (‘H’) and with
innovation covariance (‘H+cov’) both for a matched and unmatched filter on
a surveillance sequence.

predicted fixation error into the visibility term, and inserted
the innovation covariance into the mean conditional entropy.
Lastly, we have discussed the Kalman filter’s sensitivity to
zoom changes if is not matching the noise characteristics.

We currently look into the advantage of entropy as
a objective function for multi-step planning, mixture of
objectives, and data fusion from several sensors. Another line
of future work is the use of innovation covariance for entropy
based zoom control in the context of model switching.
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